Analisis Perbandingan SAW, WP dan TOPSIS Untuk Rekomendasi Restoran
Abstract
Choosing the right restaurant for your food is a decision that can affect your overall culinary experience. In this study, the data used is data from TripAdvisor in the form of ratings and ratings of restaurants in Lampung. The data taken is the top 5 ranking data in tripadvisor which will be an analysis in providing restaurant recommendations based on the rating data on the website. The ranking results using the SAW method Rank 1 was obtained by Square Restaurant with a final score of 0.895. The ranking results using the WP Rank 1 method were obtained by Square Restaurant with a final score of 0.203427. The ranking results using the TOPSIS method Rank 1 were obtained by Pempek 123 with a final value of 0.580511982. The results of a comparative analysis of SAW, WP, or TOPSIS depend on the complexity of the decision, user preferences, and the specific characteristics of the decision-making problem at hand. SAW lends itself to simple decision, WP provides greater flexibility on weight handling, and TOPSIS can provide more in-depth analysis by considering both positive and negative ideal matrices.
References
A. T. Priandika and D. Riswanda, “Perancangan Sistem Informasi Manajemen Pemesanan Barang Berbasis Online Menggunakan Pendekatan Extreme Programming,” J. Ilm. Comput. Sci., vol. 1, no. 2, pp. 69–76, 2023, doi: 10.58602/jics.v1i2.8.
S. Sintaro, “Permodelan Sistem Informasi Pembelian dan Penjualan Berbasis Website,” J. Ilm. Inform. dan Ilmu Komput., vol. 1, no. 1, pp. 25–32, 2022.
N. Fadhlullah, S. Setiawansyah, and A. Surahman, “PENERAPAN TEKNOLOGI WEB SCRAPING SEBAGAI PENGUMPULAN DATA COVID-19 DI PROVINSI LAMPUNG,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 1, pp. 25–30, 2022, doi: 10.33365/jatika.v3i1.1841.
S. H. Hadad, A. L. Kalua, F. Faridi, D. Y. Priyanggodo, and E. Alfonsius, Analisis dan perancangan perangkat lunak. Bandar Lampung: CV Keranjang Teknologi Media, 2023. [Online]. Available: https://ebook.kertekmedia.com/detailebook.php?title=Buku-Teks:-Analisis-Dan-Perancangan-Perangkat-Lunak
S. Setiawansyah, A. Surahman, A. T. Priandika, and S. Sintaro, Penerapan Sistem Pendukung Keputusan pada Sistem Informasi. Bandar Lampung: CV Keranjang Teknologi Media, 2023. [Online]. Available: https://buku.techcartpress.com/detailebook?id=1/penerapan-sistem-pendukung-keputusan-pada-sistem-informasi/setiawansyah-ade-surahman-adhie-thyo-priandika-sanriomi-sintaro
L. Nababan, R. Daeli, D. Siregar, E. W. Ambarsari, and S. Fadli, “Sistem Pendukung Keputusan Rekomendasi Pengangkatan Karyawan Kontrak Menjadi Karyawan Tetap Menerapkan Metode Multi Objective Optimization on the Basis of Ratio Analysis (MOORA),” J. Informatics Manag. Inf. Technol., vol. 3, no. 2, pp. 35–45, 2023, doi: 10.47065/jimat.v3i2.254.
M. R. Ramadhan, M. K. Nizam, and M. Mesran, “Penerapan Metode SAW (Simple Additive Weighting) Dalam Pemilihan Siswa-Siswi Berprestasi Pada Sekolah SMK Swasta Mustafa,” TIN Terap. Inform. Nusant., vol. 1, no. 9, pp. 459–471, 2021.
S. Setiawansyah, “Kombinasi Pembobotan PIPRECIA-S dan Metode SAW dalam Pemilihan Ketua Organisasi Sekolah,” J. Ilm. Inform. dan Ilmu Komput., vol. 2, no. 1, pp. 32–40, 2023.
A. R. Mishra, P. Rani, and R. S. Prajapati, “Multi-criteria weighted aggregated sum product assessment method for sustainable biomass crop selection problem using single-valued neutrosophic sets,” Appl. Soft Comput., vol. 113, p. 108038, 2021.
V. P. Sabandar, “Sistem Pendukung Keputusan Penentuan Produk Terbaik Menggunakan Weighted Product Method,” J. Ilm. Comput. Sci., vol. 1, no. 2, pp. 58–68, 2023, doi: 10.58602/jics.v1i2.7.
W. Atthirawong, “Application of TOPSIS method to green supplier selection for a Thai OTOP producer,” Curr. Appl. Sci. Technol., vol. 20, no. 1, pp. 144–155, 2020.
S. Setiawansyah, “Sistem Pendukung Keputusan Rekomendasi Tempat Wisata Menggunakan Metode TOPSIS,” J. Ilm. Inform. dan Ilmu Komput., vol. 1, no. 2, pp. 54–62, 2022, doi: 10.53513/jursi.v1i3.5269.
A. Blagojević, Ž. Stević, D. Marinković, S. Kasalica, and S. Rajilić, “A novel entropy-fuzzy PIPRECIA-DEA model for safety evaluation of railway traffic,” Symmetry (Basel)., vol. 12, no. 9, p. 1479, 2020.
Z. Stevic, D. Nunic, I. Badi, and D. Karabasevic, “Evaluation of dimensions of SERVQUAL model for determining quality of processes in reverse logistics using a Delphi–Fuzzy PIPRECIA model,” Rom. J. Econ. Forecast, vol. 25, pp. 139–159, 2022.
S. H. Hadad et al., “Student Ranking Based on Learning Assessment Using the Simplified PIPRECIA Method and CoCoSo Method,” J. Comput. Syst. Informatics, vol. 5, no. 1, 2023, doi: 10.47065/josyc.v5i1.4544.
W. Yusnaeni and R. Ningsih, “Analisa Perbandingan Metode Topsis, Saw Dan Wp Melalui Uji Sensitifitas Untuk Menentukan Pemilihan Supplier,” J. Inform., vol. 6, no. 1, pp. 9–17, 2019.
M. A. Maulana, A. Dewi, F. Krisna, I. W. Julianto, and P. Rosyani, “Analisa Perbandingan SAW, WP, dan TOPSIS Dalam Penentuan Siswa Terbaik,” OKTAL J. Ilmu Komput. dan Sains, vol. 2, no. 06, pp. 1552–1560, 2023.
D. Mahendra and A. T. P. Setiawansyah, “PERANCANGAN DAN IMPLEMENTASI SISTEM INVENTARIS BARANG MENGGUNAKAN METODE WEB ENGINEERING (STUDI KASUS: SMK TRISAKTI JAYA BANDAR LAMPUNG),” J. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 33–37, 2022, doi: 10.33365/jtsi.v3i2.1692.
Copyright (c) 2024 Vederico Pitsalitz Sabandar, Agung Deni Wahyudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.