Implementation of the Geometric Mean Multi-Attribute Utility Theory (G-MAUT) in Determining the Best Honorary Employees
Abstract
Determining the best honorary employees is a strategic step to appreciate performance, increase motivation, and encourage productivity in the work environment. This process is carried out by evaluating employees based on certain criteria. The main problem in determining the best honorary employees is the lack of objectivity and transparency in the assessment process, which often leads to dissatisfaction among employees. Judgments that rely solely on subjective perceptions without considering measurable quantitative data can result in unfair decisions. The purpose of applying the Geometric Mean Multi-Attribute Utility Theory (G-MAUT) method in determining the best honorary employees is to provide a more objective, transparent, and accurate evaluation framework in decision-making. This method not only supports a fairer selection process, but also encourages increased motivation and performance among honorary employees. The results of the calculation of the final utility value carried out using the G-MAUT method, the results of the evaluation of eight honorary employees showed their performance ratings comprehensively. Honorary Employee F has the highest utility value of 0.6399, making it the best honorarium employee among all available alternatives. Followed by Honorary Employee A who was ranked second with a utility value of 0.4685, and Honorary Employee D in third place with a value of 0.3947. These results provide a clear picture of the order of employees based on their performance in various criteria that have been assessed.
References
K. Munthe, T. R. A. Syahputra, A. A. Pasuli, and M. A. Hasibuan, “Sistem Pendukung Keputusan Pemilihan Pegawai Honorer Kelurahan Medan Sinembah Menerapkan Metode ROC dan MOORA,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 20–29, 2022.
S. B. Atim and R. Arundaa, “Metode A New Additive Ratio Assessment (ARAS) Dalam Penentuan Pegawai Honor Berprestasi,” J. Inf. Technol. Softw. Eng. Comput. Sci., vol. 2, no. 1, pp. 40–48, 2024, doi: 10.58602/itsecs.v2i1.96.
P. Palupiningsih and S. Setiawansyah, “Best Sales Selection Using a Combination of Reciprocal Rank Weighting Method and Multi-Attribute Utility Theory,” J. Comput. Informatics Res., vol. 3, no. 3, pp. 242–250, Jul. 2024, doi: 10.47065/comforch.v3i3.1496.
A. Choicharoon, R. Hodgett, B. Summers, and S. Siraj, “Hit or miss: A decision support system framework for signing new musical talent,” Eur. J. Oper. Res., vol. 312, no. 1, pp. 324–337, Jan. 2024, doi: 10.1016/j.ejor.2023.06.014.
S. Arena, E. Florian, I. Zennaro, P. F. Orrù, and F. Sgarbossa, “A novel decision support system for managing predictive maintenance strategies based on machine learning approaches,” Saf. Sci., vol. 146, p. 105529, Feb. 2022, doi: 10.1016/j.ssci.2021.105529.
N. A. Sinaga et al., “Decision support system with MOORA method in selection of the best teachers,” in AIP Conference Proceedings, 2022, vol. 2453, no. 1, p. 030020. doi: 10.1063/5.0094437.
I. M. Hezam, A. R. Mishra, P. Rani, A. Saha, F. Smarandache, and D. Pamucar, “An integrated decision support framework using single-valued neutrosophic-MASWIP-COPRAS for sustainability assessment of bioenergy production technologies,” Expert Syst. Appl., vol. 211, p. 118674, Jan. 2023, doi: 10.1016/j.eswa.2022.118674.
S. Kucuksari, D. Pamucar, M. Deveci, N. Erdogan, and D. Delen, “A new rough ordinal priority-based decision support system for purchasing electric vehicles,” Inf. Sci. (Ny)., vol. 647, p. 119443, 2023.
J. Wang, A. R. Isnain, R. R. Suryono, Y. Rahmanto, M. Mesran, and S. Setiawansyah, “Decision Support System for Platform Selection in E-Commerce Using the OWH-TOPSIS Method,” J. Comput. Syst. Informatics, vol. 6, no. 1, pp. 172–181, 2024, doi: 10.47065/josyc.v6i1.5990.
J. Wang, D. Darwis, S. Setiawansyah, and Y. Rahmanto, “Implementation of MABAC Method and Entropy Weighting in Determining the Best E-Commerce Platform for Online Business,” JiTEKH, vol. 12, no. 2, pp. 58–68, 2024, doi: 10.35447/jitekh.v12i2.1000.
J. Wang, S. Setiawansyah, and Y. Rahmanto, “Decision Support System for Choosing the Best Shipping Service for E-Commerce Using the SAW and CRITIC Methods,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 2, pp. 101–109, 2024, doi: 10.58602/jima-ilkom.v3i2.32.
M. W. Arshad, S. Setiawansyah, Y. Rahmanto, P. Palupiningsih, and S. Maryana, “Modification of Multi-Attribute Utility Theory in Determining Scholarship Recipient Students,” BEES Bull. Electr. Electron. Eng., vol. 5, no. 1, pp. 10–19, 2024, doi: 10.47065/bees.v5i1.5523.
F. S. Mawinar, R. D. Gunawan, and A. T. Priandika, “Sistem Pendukung Keputusan Pemilihan Pegawai Honorer Terbaik Menggunakan Metode Visekriterijumsko Kompromisno Rangiranje,” J. Data Sci. Inf. Syst., vol. 1, no. 4, pp. 182–191, 2023, doi: 10.58602/dimis.v1i4.81.
N. P. Siburian and L. Sahriani, “Sistem Pendukung Keputusan Pemilihan Pegawai Honorer Kelurahan Menerapkan Metode MOORA,” TIN Terap. Inform. Nusant., vol. 3, no. 10, pp. 395–404, Mar. 2023, doi: 10.47065/tin.v3i10.4148.
A. A. Izka and H. Sulistiani, “Sistem Pendukung Keputusan Pemilihan Supplier Toserba Terbaik Menggunakan Metode Objective Weighting-TOPSIS (OWH-TOPSIS),” J. Inf. Syst. Res., vol. 6, no. 1, pp. 145–155, 2024, doi: 10.47065/josh.v6i1.5889.
M. W. Arshad, S. Setiawansyah, R. R. Suryono, and Y. Rahmanto, “Combination of CRITIC Weighting Method and Multi-Atributive Ideal-Real Comparative Analysis in Staff Admissions,” Explorer (Hayward)., vol. 4, no. 2, pp. 77–86, 2024, doi: 10.47065/explorer.v4i2.1428.
J. S. Putri, A. T. Priandika, and Y. Rahmanto, “Sistem Informasi Administrasi Surat Menyurat Pada Kantor Balai Desa Jatimulyo,” Chain J. Comput. Technol. Comput. Eng. Informatics, vol. 1, no. 1 SE-Articles, pp. 1–6, Jan. 2023, doi: 10.58602/chain.v1i1.1.
Copyright (c) 2025 Setiawansyah Setiawansyah, Yuri Rahmanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.